
 Team: Hunter Pendergrass, Leroy Goorcharran, Nathanael Johnson

Customer: Chris Simmons

Ransomware Demonstration

 Release No. 1

Security Solution Final Report

Version No. 3

 Team: Hunter Pendergrass, Leroy Goorcharran, Nathanael Johnson

Ransomware Demonstration

 Release No. 1

Security Solution Final Report

Version No. 3

Prepared By: Inspected/Reviewed By: Approved By:

Nathanael Johnson Leroy Goorcharran Hunter Pendergrass

NAME(s): Hunter Pendergrass, Leroy Goorcharran, Nathanael Johnson

TITLE: Ransomware Demonstration

SIGNATURE:

DATE: 12/12/2021

VERSION HISTORY

Version

No.

Date Changed By: Changes Made:

1

12/09/21 Nathanael Johnson Figures, Introduction, Security Implementation

2

12/10/21 Leroy Goorcharran Coding and debugging of ransomware script,

testing and running ransomware, grammar fixing.

3

12/11/21 Hunter Pendergrass Changes to sentence structure and further grammar

checking.

 Team: Hunter Pendergrass, Leroy Goorcharran, Nathanael Johnson

 Page 3 of 11

Ransomware Demonstration

Security Solution Final Report

Table of Contents

Introduction 5

Problem Frame/Attack Scenario 5

Functionality/Features Proposed 6

Security Implementation 6

Methodology 6

Topology 7

Security Requirements 7

Resources Used 7

Testing 7

Results 9

Conclusion 10

 Team: Hunter Pendergrass, Leroy Goorcharran, Nathanael Johnson

 Page 4 of 11

Table of Figures

Figure 1 : Code for files to encrypt. 5

Figure 2: Bitcoin website used for transaction 6

Figure 3: Code used for the ransomware note. 8

Figure 4: Ransomware note that prompts up. 8

Figure 5: Code of the ransomware note that prompts up upon being executed. 9

Figure 6: Decrypting message including private key. 9

 Team: Hunter Pendergrass, Leroy Goorcharran, Nathanael Johnson

 Page 5 of 11

Introduction
We found a functioning piece of ransomware, edited it to our liking and demonstrated how it

could be used. Ransomware is a type of malware attack in which the attacker locks and encrypts

the victim's data and then demands a payment to unlock and decrypt the data. The purpose of this

demonstration was to show how ransomware is able to affect a device by encrypting data and

denying you access to your own files, how easy it is to find or write ransomware, how seriously

you should take your security precautions, and to demonstrate and discuss some of the ways

people will attempt to access your devices.

We have found ransomware that works well for demonstration purposes because it attacks only

a designated folder, making it significantly easier to contain and test. We demonstrated the

execution of how the ransomware would infect an individual's computer when attacked and what

followed after, which was how to unrelease the ransomware attack that involved using public and

private keys.

Problem

Frame/Attack

Scenario

There could be multiple different ways of getting a person to open your

file, but the easiest one we found and plan to demonstrate, was to hide

the program as an image. Even within this, there’s many ways to get

people to open an image, but if you’re looking to infect a business, go

for HR. Send a complaint about an employee sending an inappropriate

image and attach the hidden malware to the email, and because it’s HR,

they have a responsibility to check it out.

Another approach we could try involves hiding the malware inside a

spreadsheet and sending it to someone to review, though this approach

requires you to do some research on who is handling these types of files

and who is supposed to review them often. Past those two, you could

always set up a fake survey with some sort of prize raffle for filling it

out, and then have them download a form to fill out their information to

receive said prize. It would take more work, but you’d also have a larger

pool of victims raising the odds that one of them would open the file

while connected to a company network.

Figure 1 : Code for files to encrypt.

As shown in Figure 1, we can see the different types of file extensions

that could have been used to hide the ransomware. The following types

of extensions to encrypt means the ransomware could have been

accessible in near any situation.

 Team: Hunter Pendergrass, Leroy Goorcharran, Nathanael Johnson

 Page 6 of 11

Functionality/Featu

res Proposed

Some of the features we considered adding to the existing ransomware

were as follows: Adding more file types to be encrypted, allowing the

program to attack the user's entire computer, not just a single folder,

allowing the program to jump from computer to computer, and linking

the bitcoin address we expected a target to send the ransom to with their

machine so that it would know if they had paid the ransom or not.

Figure 2: Bitcoin website used for transaction

The reason we didn't implement these features specifically were as

follows: In regard to adding more file types, it would be useful in a real

attack, but for demonstration purposes it was more useful to show we

could choose to encrypt some things and not to encrypt others. In regard

to allowing the program to act outside of a specified folder, it would

again be useful during an attack, but it would make it more dangerous

to test, and more difficult to demonstrate. In regard to making the

program jump from target to target, not only was it somewhat outside

our realm of expertise, it also would have made the program more

dangerous to test. Finally, in regard to linking a specific bitcoin address

to a victim's machine, it would have been exceptionally tedious to make

the required number of bitcoin addresses, as well as having pulled our

focus away from completing the basics of the program to chase an

advanced feature we wouldn't have been able to implement in the time

available. Figure 2 shows the bitcoin website that is followed by when

the ransomware is executed where transactions to be done.

Security Implementation

Methodology Our principal use is a Waterfall model, where we planned the project out

at the beginning, and then followed it through one phase at a time, though

 Team: Hunter Pendergrass, Leroy Goorcharran, Nathanael Johnson

 Page 7 of 11

we did make some minor variations to account for changes in testing

environments. The ransomware will demonstrate it infecting the device,

show the message that informs the user of the attack, show the files being

inaccessible, and show the decryption occurring when the correct key is

entered.

Topology The topology for this project is mainly point to point. We send a

message directly to the recipient (target/victim), once they open it, it

acts on their machine. They message back to us, we reply with an

account to pay, and once they’ve paid, we send them the file to decrypt.

It’s just a series of point-to-point interactions. These point-to-point

interactions are merely a transactional relationship between the attacker

and victim. No other connections besides that are shown.

Security

Requirements

The use of this program would violate multiple security or privacy

regulations, seeing as it invades the target's computer and encrypts their

data. Using this program on a computer belonging to an individual

would, if nothing else, violate federal law. Using this on a computer

belonging to a business, corporation, trust, or LLC would almost

assuredly violate their security policies and regulations, on top of

breaking federal law. As stated in the Topology, the attack was mainly

point to point, as it happened between the target being invaded by the

attacker’s ransomware.

Resources Used The technology used; Python - To write ransomware code, Three

Laptops, a flash drive - Transferring files between computers and virtual

machines, a virtual machine - Windows OS. resource Hacker - assigning

icon to ransomware, RSA - was used to create the public and private

keys and handle encryption and decryption of the victims’ files.

Other resources used; guide for how to hide malware as an image [1],

guide for making executable from python code [2], Ransomware

Tutorial [3], and a site for changing images into icons [4].

Testing

We have a flash drive that we loaded the program onto, and we have loaded the files onto the

virtual machine for safety when we plan on running it. We make sure that the files are within the

correct folder on the virtual machine, and that they are readable before we start.

For this specific demonstration, we defined a path to the folder containing some test files, as well

as what file types we want the program to encrypt. We then run a separate program to generate a

public and private key that we will use when it comes to encrypting and decrypting.

 Team: Hunter Pendergrass, Leroy Goorcharran, Nathanael Johnson

 Page 8 of 11

Figure 3: Code used for the ransomware note.

As shown in Figure 3 is the code written to prompt the note when the ransomware is executed, it

also prompts the bitcoin website as shown in Figure 2. As you can see in the code, the notepad.exe

is prompt to open once the victim runs the exe picture.

Figure 4: Ransomware note that prompts up.

We run the malware itself, and it encrypts the files, opens the webpage for bitcoin to explain what

bitcoin is, and opens a pre-prepared ransom note shown in Figure 4 that will continue to bring

itself to the front of the screen, as well as changing the background image. In the note we can see

three easy steps listed, as well as all the warnings involved if the victim doesn't comply with the

steps listed.

Then, once the victim “pays up”, we give the target the decryption key, it generates a file that

will decrypt the victim’s files once they place it on their desktop.

 Team: Hunter Pendergrass, Leroy Goorcharran, Nathanael Johnson

 Page 9 of 11

Figure 5: Code of the ransomware note that prompts up upon being executed.

As shown in Figure 5 defines a file with a certain name, and then continually checks to see if it's

on the desktop. If it finds a file with the right name, and the right key, it knows to decrypt itself.

Results

We have working malware, we can make that malware into an executable, and we can hide that

executable to make it look like an image. We would agree to call that a success. We didn’t get as

many improvements into the program as we wanted to, but the project works.

Figure 6: Decrypting message including private key.

As shown in Figure 6, you can see the ransomware being decrypted by the code, private key,

private decrypter, decrypted fernet key, and a message statement saying the ransomware

decryption is completed.

Provide the results of the testing of your implementation.

 Team: Hunter Pendergrass, Leroy Goorcharran, Nathanael Johnson

 Page 10 of 11

Conclusion

When it comes to what we learned about malware, we found and used ransomware, and we

learned how to hide files to look like other files. We also learned some of the difficulties of using

ransomware that we can use to keep ourselves safe, and how using a virtual machine-like Virtual

box can help. We practiced using public and private key RSA encryption and learned just how

accessible ransomware is.

When it comes to project management, we learned that when working on a project like this, we

have to decide about fundamentals early and live with it. We spent too much time bouncing

between different potential methods of testing and it cut us out from making more substantial

improvements. We learned to clearly define which members of the team are responsible for which

aspects of the project early on, and to be willing to trade later if necessary. There were times we

could have had multiple people working on different points, but we didn’t clearly define who was

responsible for specific parts of the project, and so we wasted time. We also learned the ever-

important lesson of knowing our own limitations. This project picked up extra aspects pretty

quickly, and it made for a more difficult deliverable that we might not have been fully prepared

for.

 Team: Hunter Pendergrass, Leroy Goorcharran, Nathanael Johnson

 Page 11 of 11

References:

[1] Code, BlackCat, Code, _hq6, A., GtoRoss, Trt, kT0Rz, Dontrustme, Mbanugo, J.,

Occupytheweb, Horgan, T., Lightscene, R., Johansen, S., Plezsnen, M., ., D., Kumar, R., Laki,

H., Bhatt, A., & Sathya, A. (2016, February 7). How to hide a virus inside of a fake picture.

WonderHowTo. Retrieved December 9, 2021, from https://null-byte.wonderhowto.com/how-

to/hide-virus-inside-fake-picture-0168183/.

[2] Data to fish. Data to Fish. (n.d.). Retrieved December 9, 2021, from

https://datatofish.com/executable-pyinstaller/.

[3] Ncorbuk. (n.d.). Ncorbuk/python-ransomware: Python ransomware tutorial - youtube tutorial

explaining code + showcasing the ransomware with victim/target roles. GitHub. Retrieved

December 9, 2021, from https://github.com/ncorbuk/Python-Ransomware.

[4]Ico convert - create icons from PNG & JPG Images Online. ICO Convert - Create Icons From

PNG & JPG Images Online. (n.d.). Retrieved December 9, 2021, from https://icoconvert.com/.

